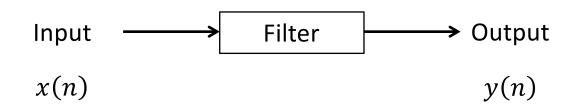
CTP431- Music and Audio Computing Audio Signal Processing (Part #1)

Graduate School of Culture Technology KAIST Juhan Nam

Types of Audio Signal Processing

- Amplitude
 - Gain, fade in/out, automation curve, compressor
- Timbre
 - EQ, distortion, modulation, chorus, flanger
- Spatial effect
 - Delay, reverberation
- Pitch
 - Pitch shifting (e.g. auto-tune)
- Duration
 - Time stretching
- Playback Rate Conversion (resampling)
 - pitch-shifting /time-stretching / timbre change

Filter

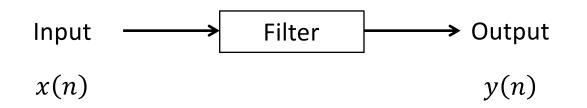


- A system that takes signals and modifies them in some way
- In particular, we are interested in digital filters that takes discrete number sequences as input and output

Basic Operations in Digital Filters

- Multiplication: $y(n) = b_0 \cdot x(n)$
- Delaying: y(n) = x(n-1)
- Summation: y(n) = x(n) + x(n-1)

Linear Time-Invariant (LTI) Digital Filters



- Linearity
 - Homogeneity: if $x(n) \rightarrow y(n)$, then $a \cdot x(n) \rightarrow a \cdot y(n)$
 - Superposition: if $x_1(n) \rightarrow y_1(n)$ and $x_2(n) \rightarrow y_2(n)$, then $x_1(n) + x_2(n) \rightarrow y_1(n) + y_2(n)$
- Time-Invariance
 - If $x(n) \rightarrow y(n)$, then $x(n N) \rightarrow y(n N)$ for any N
 - This means that the system does not change its behavior over time

LTI Digital Filters

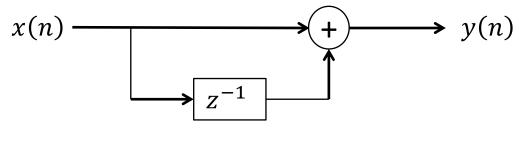
- A LTI digital filters performs a combination of the three operations $-y(n) = b_0 \cdot x(n) + b_1 \cdot x(n-1) + b_2 \cdot x(n-2) + \dots + b_M \cdot x(n-M)$
- This is a general form of **Finite Impulse Response (FIR) filter**

The Simplest Lowpass Filter

Difference equation

$$y(n) = x(n) + x(n-1)$$

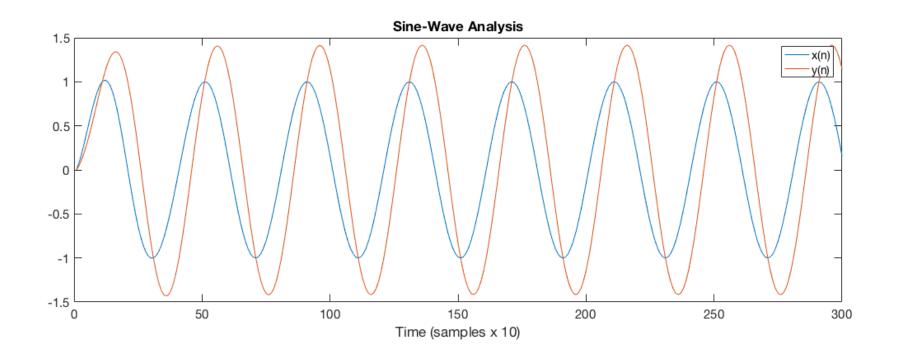
Signal flow graph



"Delay Operator"

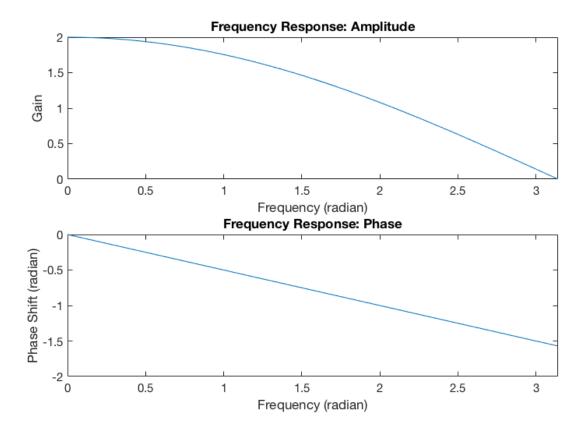
The Simplest Lowpass Filter: Sine-Wave Analysis

Measure the amplitude and phase changes given a sinusoidal signal input



The Simplest Lowpass Filter: Frequency Response

- Plot the amplitude and phase change over different frequency
 - The frequency sweeps from 0 to the Nyquist rate



The Simplest Lowpass Filter: Frequency Response

- Mathematical approach
 - Use complex sinusoid as input: $x(n) = e^{j\omega n}$
 - Then, the output is:

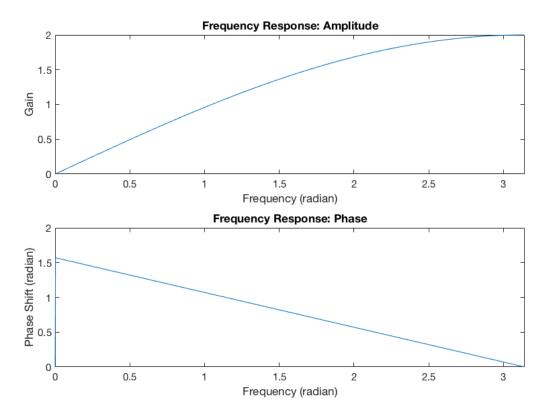
$$y(n) = x(n) + x(n-1) = e^{j\omega n} + e^{j\omega(n-1)} = (1 + e^{-j\omega}) \cdot e^{j\omega n} = (1 + e^{-j\omega}) \cdot x(n)$$

- Frequency response:
$$H(\omega) = (1 + e^{-j\omega}) = (e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}})e^{-j\frac{\omega}{2}} = 2\cos(\frac{\omega}{2})e^{-j\frac{\omega}{2}}$$

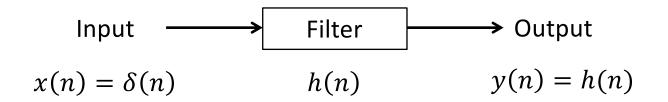
- Amplitude response: $|H(\omega)| = 2\cos\left(\frac{\omega}{2}\right)$
- − Phase response: ∠ $H(ω) = -\frac{ω}{2}$

The Simplest Highpass Filter

- Difference equation: y(n) = x(n) x(n-1)
- Frequency response



Impulse Response



- The filter output when the input is a unit impulse $-x(n) = \delta(n) = [1, 0, 0, 0, ...] \rightarrow y(n) = h(n)$
- Characterizes the digital system as a sequence of numbers
 - A system is represented just like audio samples!

Examples: Impulse Response

- The simplest lowpass filter
 h(n) = [1, 1]
- The simplest highpass filter
 h(n) = [1, -1]
- Moving-average filter (order=5)
 - $h(n) = \left[\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right]$
- General FIR Filter
 - − $h(n) = [b_0, b_1, b_2, ..., b_M] \rightarrow A$ finite length of impulse response

Convolution

 The output of LTI digital filters is represented by convolution operation between x(n) and h(n)

$$y(n) = x(n) * h(n) = \sum_{i=0}^{M} x(i) \cdot h(n-i)$$

- Deriving convolution
 - The input can be represented as a time-ordered set of weighted impulses

•
$$x(n) = [x_0, x_1, x_2, ..., x_M] = x_0 \cdot \delta(n) + x_1 \cdot \delta(n-1) + x_2 \cdot \delta(n-2) + \dots + x_M \cdot \delta(n-M)$$

By the linearity and time-invariance

•
$$y(n) = x_0 \cdot h(n) + x_1 \cdot h(n-1) + x_2 \cdot h(n-2) + \dots + x_M \cdot h(n-M) = \sum_{i=0}^{M} x(i) \cdot h(n-i)$$

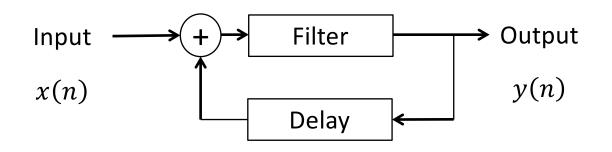
Convolution In Practice

The practical expression of convolution

$$y(n) = x(n) * h(n) = \sum_{i=0}^{M} x(i) \cdot h(n-i) = \left| \sum_{i=0}^{M} h(i) \cdot x(n-i) \right|$$

- This represents input x(n) as a streaming data to the filter h(n)
- Matlab Animation Demo
 - <u>http://mac.kaist.ac.kr/~juhan/ctp431/convolution_demo.html</u>
- The length of convolution output
 - If the length of x(n) is M and the length of h(n) is N, the length of y(n) is M+N-1

Feedback Filter



LTI digital filters allow to use the past outputs as input

- Past outputs: y(n - 1), y(n - 2), ..., y(n - N)

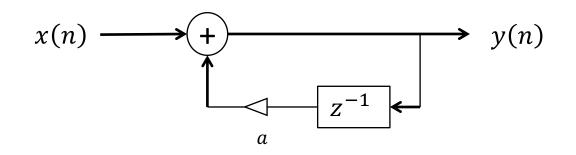
- The whole system can be represented as
 - $y(n) = b_0 \cdot x(n) + a_1 \cdot y(n-1) + a_2 \cdot y(n-2) + \dots + a_N \cdot y(n-N)$
 - This is a general form of Infinite Impulse Response (IIR) filter

A Simple Feedback Lowpass Filter

Difference equation

$$y(n) = x(n) + a \cdot y(n-1)$$

Signal flow graph



– When *a* is slightly less than 1, it is called "Leaky Integrator"

A Simple Feedback Lowpass Filter: Impulse Response

- Impulse response
 - y(0) = x(0) = 1 $- y(1) = x(1) + a \cdot y(0) = a$ $- y(2) = x(2) + a \cdot y(1) = a^{2}$ $- \dots$

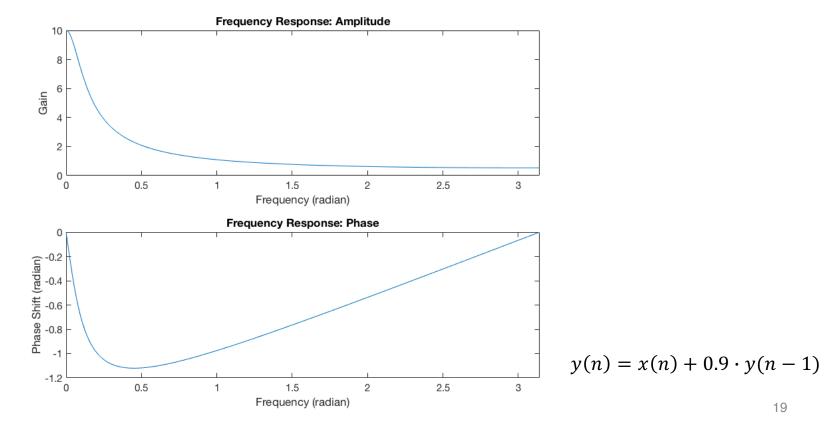
$$- y(n) = x(n) + a \cdot y(n-1) = a^n$$

Stability!

- If *a* < 1, the filter output converges (stable)
- If a = 1, the filter output oscillates (critical)
- If a > 1, the filter output diverges (unstable)

A Simple Feedback Lowpass Filter: Frequency Response

- More dramatic change than the simplest lowpass filter (FIR)
 - Phase response is not linear

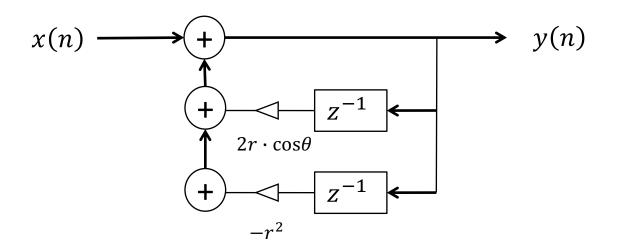


Reson Filter

Difference equation

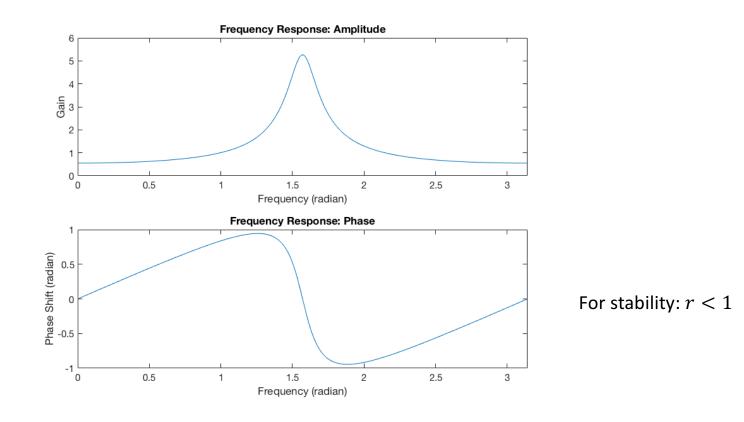
$$y(n) = x(n) + 2r \cdot \cos\theta \cdot y(n-1) - r^2 \cdot y(n-2)$$

Signal flow graph



Reson Filter: Frequency Response

- Generate resonance at a particular frequency
 - Control the peak height by r and the peak frequency by θ

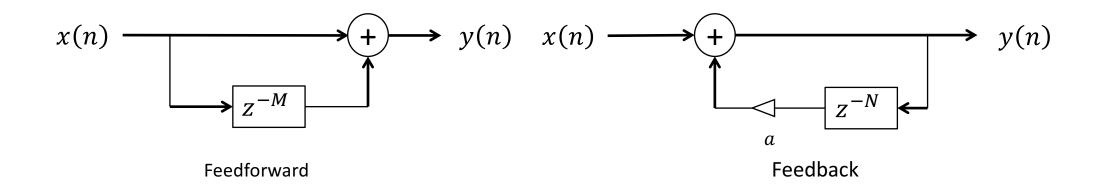


Comb Filter

Difference equation

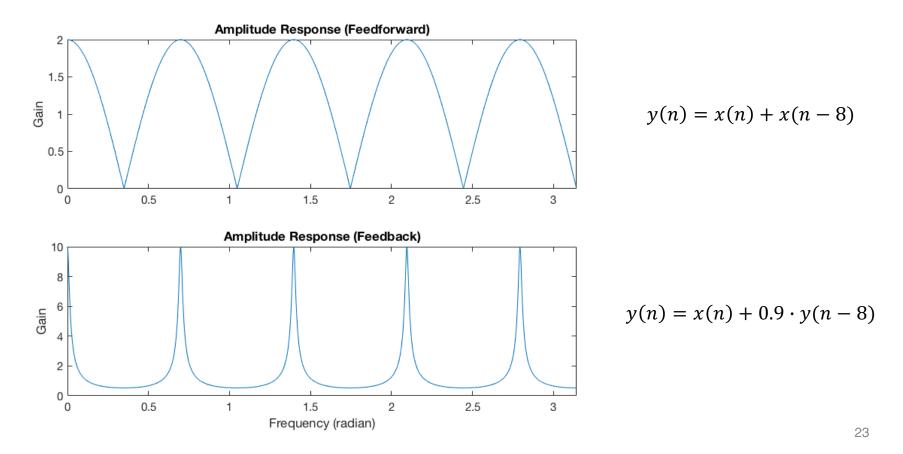
$$y(n) = x(n) + x(n - M)$$
 (Feedforward)
 $y(n) = x(n) + a \cdot y(n - N)$ (Feedback)

Signal flow graph



Comb Filter: Frequency Response

"Combs" become shaper in the feedback type



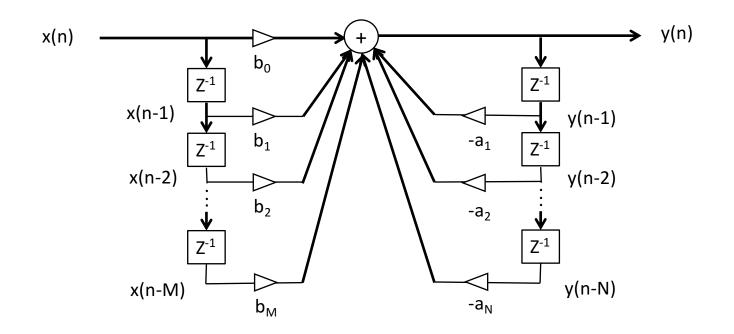
Perception of Time Delay

- The 30 Hz transition
 - Given a repeated click sound (e.g. impulse train):
 - If the rate is less than 30Hz, they are perceived as discrete events.
 - As the rate is above 30 Hz, they are perceive as a tone
 - Demo: <u>http://auditoryneuroscience.com/?q=pitch/click_train</u>
- Feedback comb filter: $y(n) = x(n) + a \cdot y(n N)$
 - If N < $\frac{F_s}{30}$ (F_s : sampling rate): models sound propagation and reflection with energy loss on a string (Karplus-strong model)
 - If N < $\frac{F_s}{30}$ (F_s : sampling rate): generate a looped delay

General Filter Form

• The general form of digital Filters

$$- y(n) = b_0 \cdot x(n) + b_1 \cdot x(n-1) + b_2 \cdot x(n-2) + \dots + b_N \cdot x(n-M) + a_1 \cdot y(n-1) + a_2 \cdot y(n-2) + \dots + a_N \cdot y(n-N)$$



Frequency Response

- Sine-wave Analysis
 - $-x(n) = e^{j\omega n} \rightarrow x(n-m) = e^{j\omega(n-m)} = e^{-j\omega m}x(n)$ for any m
 - Let's assume that $y(n) = G(\omega)e^{j(\omega n + \theta(\omega))} \rightarrow y(n m) = e^{-j\omega m}y(n)$ for any m
- Putting this into the different equation

Z-Transform

- Z-transform
 - Define *z* to be a variable in complex plane: we call it *z*-plane
 - When $z = e^{j\omega}$ (on unit circle), the frequency response is a particular case of the following form

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 \cdot z^{-1} + b_2 \cdot z^{-2} + \dots + b_M \cdot z^{-M}}{1 + a_1 \cdot z^{-1} + a_2 \cdot z^{-2} + \dots + a_N \cdot z^{-N}}$$

- We call this *z*-transform or the transfer function of the filter
- z^{-1} corresponds to one sample delay: delay operator or delay element
- Filters are often expressed as *z*-transform: polynomial of z^{-1}

Z-Transform

- Poles and Zeros
 - H(z) can be factorized and we can find roots for each of polynomials
 - Zeros: the numerator roots
 - Poles: the denominator roots

$$H(z) = \frac{B(z)}{A(z)} = \frac{(1 - q_1 z^{-1})(1 - q_2 z^{-1})(1 - q_3 z^{-1})\dots(1 - q_M z^{-1})}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})(1 - p_3 z^{-1})\dots(1 - p_N z^{-1})}$$

 We can analyze frequency response of filters more easily with poles and zeros than numerator or denominator coefficient

Practical Filters

- One-pole one-zero filters
 - Leaky integrator
 - Moving average
 - DC-removal filters
 - Bass / treble shelving filter
- Biquad filters
 - Reson filter
 - Band-pass / notch filters
 - Equalizer: a set of biquad filters

$$H(z) = \frac{b_0 + b_1 z}{a_0 + a_1 z^{-1}}$$

1. . 1. _-1

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

 Any high-order filter can be factored into a combination of one-pole onezero filters or bi-quad filters!