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Types of Audio Signal Processing

§ Amplitude
– Gain, fade in/out, automation curve, compressor 

§ Timbre
– EQ, distortion, modulation, chorus, flanger

§ Spatial effect
– Delay, reverberation

§ Pitch 
– Pitch shifting (e.g. auto-tune)

§ Duration
– Time stretching

§ Playback Rate Conversion (resampling)
– pitch-shifting /time-stretching / timbre change
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Filter

§ A system that takes signals and modifies them in some way

§ In particular, we are interested in digital filters that takes discrete 
number sequences as input and output
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Basic Operations in Digital Filters

§ Multiplication:  𝑦 𝑛 = 𝑏& ' 𝑥 𝑛

§ Delaying:  𝑦 𝑛 = 𝑥 𝑛 − 1

§ Summation:  𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 − 1
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Linear Time-Invariant (LTI) Digital Filters

§ Linearity
– Homogeneity: if 𝑥 𝑛 → 𝑦 𝑛 , then a ' 𝑥 𝑛 → a ' 𝑦 𝑛
– Superposition: if 𝑥- 𝑛 → 𝑦- 𝑛 and 𝑥. 𝑛 → 𝑦. (n), then 𝑥- 𝑛 + 𝑥. 𝑛 → 𝑦- 𝑛 + 𝑦. 𝑛

§ Time-Invariance
– If 𝑥 𝑛 → 𝑦 𝑛 , then 𝑥 𝑛 − 𝑁 → 𝑦 𝑛 − 𝑁 for any 𝑁
– This means that the system does not change its behavior over time
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LTI Digital Filters

§ A LTI digital filters performs a combination of the three operations
– 𝑦 𝑛 = 𝑏& ' 𝑥 𝑛 + 𝑏- ' 𝑥 𝑛 − 1 + 𝑏. ' 𝑥 𝑛 − 2 +⋯+ 𝑏2 ' 𝑥 𝑛 −𝑀

§ This is a general form of Finite Impulse Response (FIR) filter
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The Simplest Lowpass Filter
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§ Difference equation

§ Signal flow graph

“Delay	Operator”



The Simplest Lowpass Filter: Sine-Wave Analysis

§ Measure the amplitude and phase changes given a sinusoidal signal 
input
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The Simplest Lowpass Filter: Frequency Response

§ Plot the amplitude and phase change over different frequency
– The frequency sweeps from 0 to the Nyquist rate
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The Simplest Lowpass Filter: Frequency Response

§ Mathematical approach
– Use complex sinusoid as input: 𝑥 𝑛 = 𝑒9:;

– Then, the output is: 

𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 − 1 = 𝑒9:; + 𝑒9:(;7-) = 1 + 𝑒79: ' 𝑒9:; = 1 + 𝑒79: ' 𝑥(𝑛)

– Frequency response: 𝐻 𝜔 = 1 + 𝑒79: = 𝑒9
>
? + 𝑒79

>
? 𝑒79

>
? = 2cos	(:

.
)𝑒79

>
?

– Amplitude response: 𝐻(𝜔) = 2 cos :
.

– Phase response: ∠𝐻 𝜔 = −:
.
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The Simplest Highpass Filter

§ Difference equation: 𝑦 𝑛 = 𝑥 𝑛 − 𝑥(𝑛 − 1)
§ Frequency response
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Impulse Response

§ The filter output when the input is a unit impulse
– 𝑥 𝑛 = 𝛿 𝑛 = 	 1, 0, 0, 0, … → 𝑦 𝑛 = ℎ(𝑛)

§ Characterizes the digital system as a sequence of numbers
– A system is represented just like audio samples!
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Examples: Impulse Response

§ The simplest lowpass filter
– h 𝑛 = 1, 1

§ The simplest highpass filter
– h 𝑛 = 1,−1

§ Moving-average filter (order=5)

– h 𝑛 = -
J
, -
J
, -
J
, -
J
, -
J

§ General FIR Filter 
– h 𝑛 = 𝑏&, 𝑏-, 𝑏., … , 𝑏2 à A finite length of impulse response 
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§ The output of LTI digital filters is represented by convolution operation
between 𝑥 𝑛 and ℎ 𝑛

§ Deriving convolution
– The input can be represented as a time-ordered set of weighted impulses

• 𝑥 𝑛 = 𝑥&, 𝑥-, 𝑥., … , 𝑥2 = 𝑥& ' 𝛿 𝑛 + 𝑥- ' 𝛿 𝑛 − 1 + 𝑥. ' 𝛿 𝑛 − 2 +⋯+ 𝑥2 ' 𝛿 𝑛 −𝑀
– By the linearity and time-invariance 

• 𝑦 𝑛 = 𝑥& ' ℎ 𝑛 + 𝑥- ' ℎ 𝑛 − 1 + 𝑥. ' ℎ 𝑛 − 2 +⋯+ 𝑥2 ' ℎ 𝑛 −𝑀 = ∑ 𝑥(𝑖) ' ℎ(𝑛 − 𝑖)2
MN&

Convolution
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Convolution In Practice

§ The practical expression of convolution 

– This represents input 𝑥 𝑛 as a streaming data to the filter ℎ 𝑛

§ Matlab Animation Demo
– http://mac.kaist.ac.kr/~juhan/ctp431/convolution_demo.html

§ The length of convolution output 
– If the length of 𝑥 𝑛 is M and the length of ℎ 𝑛 is N, the length of 𝑦 𝑛 is M+N-1
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Feedback Filter

§ LTI digital filters allow to use the past outputs as input
– Past outputs:  𝑦 𝑛 − 1 , 𝑦 𝑛 − 2 ,… , 𝑦 𝑛 − 𝑁

§ The whole system can be represented as
– 𝑦 𝑛 = 𝑏& ' 𝑥 𝑛 + 𝑎- ' 𝑦 𝑛 − 1 + 𝑎. ' 𝑦 𝑛 − 2 +⋯+ 𝑎R ' 𝑦 𝑛 − 𝑁
– This is a general form of Infinite Impulse Response (IIR) filter
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§ Difference equation

§ Signal flow graph

– When 𝑎 is slightly less than 1, it is called “Leaky Integrator” 

A Simple Feedback Lowpass Filter
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A Simple Feedback Lowpass Filter: Impulse Response

§ Impulse response
– 𝑦 0 = 𝑥 0 = 1
– 𝑦 1 = 𝑥 1 + 𝑎 ' 𝑦 0 = 𝑎
– 𝑦 2 = 𝑥 2 + 𝑎 ' 𝑦 1 = 𝑎.

– …
– 𝑦 𝑛 = 𝑥 𝑛 + 𝑎 ' 𝑦 𝑛 − 1 = 𝑎;

§ Stability! 
– If 𝑎 < 1, the filter output converges (stable)
– If 𝑎 = 1, the filter output oscillates (critical)
– If 𝑎 > 1, the filter output diverges (unstable)
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A Simple Feedback Lowpass Filter: Frequency Response

§ More dramatic change than the simplest lowpass filter (FIR)
– Phase response is not linear
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Reson Filter
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§ Difference equation

§ Signal flow graph
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Reson Filter: Frequency Response

§ Generate resonance at a particular frequency 
– Control the peak height by 𝑟 and the peak frequency by 𝜃
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§ Difference equation

§ Signal flow graph

Comb Filter
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Comb Filter: Frequency Response

§ ”Combs” become shaper in the feedback type
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Perception of Time Delay

§ The 30 Hz transition
– Given a repeated click sound (e.g. impulse train):

• If the rate is less than 30Hz,  they are perceived as discrete events. 
• As the rate is above 30 Hz, they are perceive as a tone

– Demo: http://auditoryneuroscience.com/?q=pitch/click_train

§ Feedback comb filter: 𝑦 𝑛 = 𝑥 𝑛 + 𝑎 ' 𝑦(𝑛 − 𝑁)
– If N < [\

]&
	 (𝐹_: sampling rate): models sound propagation and reflection with energy 

loss on a string  (Karplus-strong model)

– If N < [\
]&
	 (𝐹_: sampling rate): generate a looped delay
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General Filter Form

§ The general form of digital Filters
– 𝑦 𝑛 = 𝑏& ' 𝑥 𝑛 + 𝑏- ' 𝑥 𝑛 − 1 + 𝑏. ' 𝑥 𝑛 − 2 + …+ 	𝑏R ' 𝑥 𝑛 −𝑀

+𝑎- ' 𝑦 𝑛 − 1 + 𝑎. ' 𝑦 𝑛 − 2 +⋯+ 𝑎R ' 𝑦 𝑛 − 𝑁
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Frequency Response

§ Sine-wave Analysis
– 𝑥 𝑛 = 𝑒9:;	à 𝑥 𝑛 −𝑚 = 𝑒9:(;7a) = 𝑒79:a𝑥 𝑛 for any 𝑚
– Let’s assume that 𝑦 𝑛 = 𝐺 𝜔 𝑒9(:;cd : )	à 𝑦 𝑛 −𝑚 = 𝑒79:a𝑦 𝑛 for any 𝑚

§ Putting this into the different equation 
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𝑦 𝑛 =
𝑏& + 𝑏- ' 𝑒79: + 𝑏. ' 𝑒79.: + …+ 	𝑏2 ' 𝑒79:2
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𝐻(𝜔) =
𝑏& + 𝑏- ' 𝑒79: + 𝑏. ' 𝑒79.: +…+ 	𝑏2 ' 𝑒79:2
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𝐻(𝜔) :	frequency	response
𝐺 𝜔 = 𝐻(𝜔) : amplitude	response
𝜃 𝜔 = ∠𝐻(𝜔) : phase	response



Z-Transform

§ 𝑍-transform
– Define z to be a variable in complex plane: we call it z-plane
– When z = ejω (on unit circle), the frequency response is a particular case of the 

following form

– We call this 𝑧-transform or the transfer function of the filter
– z-1 corresponds to one sample delay: delay operator or delay element
– Filters are often expressed as 𝑧-transform: polynomial of 𝑧7-
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Z-Transform

§ Poles and Zeros
– H(z) can be factorized and we can find roots for each of polynomials
– Zeros: the numerator roots
– Poles: the denominator roots

§ We can analyze frequency response of filters more easily with poles and 
zeros than numerator or denominator coefficient
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Practical Filters

§ One-pole one-zero filters
– Leaky integrator
– Moving average
– DC-removal filters
– Bass / treble shelving filter

§ Biquad filters
– Reson filter 
– Band-pass / notch filters
– Equalizer: a set of biquad filters

§ Any high-order filter can be factored into a combination of one-pole one-
zero filters or bi-quad filters!

29

H (z) = b0 + b1z
−1

a0 + a1z
−1

H (z) = b0 + b1z
−1 + b2z

−2

a0 + a1z
−1 + a2z

−2


