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Types of Audio Signal Processing

= Amplitude

— Gain, fade in/out, automation curve, compressor
= Timbre

— EQ, distortion, modulation, chorus, flanger

= Spatial effect

— Delay, reverberation
= Pitch

— Pitch shifting (e.g. auto-tune)
= Duration

— Time stretching

= Playback Rate Conversion (resampling)
— pitch-shifting /time-stretching / timbre change



Filter

Input ——> Filter —> Qutput

x(n) y(n)

= A system that takes signals and modifies them in some way

= |n particular, we are interested in digital filters that takes discrete
number sequences as input and output



Basic Operations in Digital Filters

Input ———> Filter = > Output

x(n) y(n)

= Multiplication: y(n) = by - x(n)
= Delaying: y(n) =x(n—1)

= Summation: y(n) =x(n) + x(n —1)



Linear Time-Invariant (LTI) Digital Filters

Input ———> Filter = > Output

x(n) y(n)

= Linearity
— Homogeneity: if x(n) » y(n), thena-x(n) » a-y(n)
— Superposition: if x;(n) - y,(n) and x,(n) - y, (n), then x;(n) + x,(n) » y;(n) + y,(n)

= Time-Invariance
— Ifx(n) » y(n), thenx(n — N) - y(n — N) forany N
— This means that the system does not change its behavior over time



LTI Digital Filters

= A LTI digital filters performs a combination of the three operations
— y(m) =by-x(n) +by - x(n—1)+by - x(n—2)+ -+ by - x(n — M)

= This is a general form of Finite Impulse Response (FIR) filter



The Simplest Lowpass Filter

= Difference equation

y(n) =x(n) +x(n—1)

= Signal flow graph

x(n) j}— y(n)
L5 -1

Z

“Delay Operator”



The Simplest Lowpass Filter: Sine-Wave Analysis

= Measure the amplitude and phase changes given a sinusoidal signal
input
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The Simplest Lowpass Filter: Frequency Response

= Plot the amplitude and phase change over different frequency

— The frequency sweeps from 0 to the Nyquist rate
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The Simplest Lowpass Filter: Frequency Response

= Mathematical approach
— Use complex sinusoid as input: x(n) = e/®"

— Then, the output is:

y(n) =x(n) + x(n— 1) = /9" + /@D = (1 4 ¢7J@) . /9" = (1 + 7/?) - x(n)
— Frequency response: H(w) = (1 +e7/®) = (ej7 + e‘j7) e”'7 = 2cos(2)e 2
— Amplitude response: |[H(w)| = 2 cos (%)

w

— Phase response: zH(w) = =



The Simplest Highpass Filter

= Difference equation: y(n) = x(n) —x(n — 1)

= Frequency response
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Impulse Response

Input ———> Filter = > Output

x(n) = 6(n) h(n) y(n) = h(n)

= The filter output when the inputis a unit impulse
— x(n)=46(n) = [1,0,0,0,..] » y(n) = h(n)

= Characterizes the digital system as a sequence of numbers
— Asystem is represented just like audio samples!



Examples: Impulse Response

The simplest lowpass filter
- h(n) =[1,1]

The simplest highpass filter
- h(n) =[1,-1]

Moving-average filter (order=5)
_ h(n):[l 111 l]

5’5’5’5’5

General FIR Filter
— h(n) = [by, by, by, ..., by ] 2> Afinite length of impulse response

13



Convolution

= The output of LTI digital filters is represented by convolution operation
between x(n) and h(n)
M

y(n) = x(n) * h(n) = " x(i) - h(n — i)

1=0

= Deriving convolution
— The input can be represented as a time-ordered set of weighted impulses
o x(n) = [xg, %1, %5, v, Xyl =% 6(M)+x;, - S(n—1D)+x, - 5(M—2)+-+x,:-6(n—M)
— By the linearity and time-invariance
cym) =xy-h(M)+x,-h(n—1) +x, -h(n—2) + -+ xy - h(n—M) =¥ x(@0) - h(n — i)
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Convolution In Practice

= The practical expression of convolution

M M
y(n) =x(n) xh(n) = z x(i)-h(n—1i) = z h(i) - x(n—1i)
i=0 (=0

— This represents input x(n) as a streaming data to the filter h(n)

= Matlab Animation Demo
— http://mac.kaist.ac.kr/~juhan/ctp431/convolution demo.html

= The length of convolution output
— If the length of x(n) is M and the length of h(n) is N, the length of y(n)is M+N-1
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Feedback Filter

Input

x(n)

Filter

Delay

> Output

y(n)

= LTI digital filters allow to use the past outputs as input

— Past outputs: y(n—1),y(n —2),...,y(n —N)

= The whole system can be represented as

- y(m) =by-x(n)+a,-yln—-1)+a, -y(n—-2)+--+ay-y(n—N)
— This is a general form of Infinite Impulse Response (lIR) filter
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A Simple Feedback Lowpass Filter

= Difference equation

y(n) =x(m)+a-y(n-1)

= Signal flow graph

x(n) ——»(% J > y(n)
~-1

— When qa is slightly less than 1, it is called “Leaky Integrator”

AN
N
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A Simple Feedback Lowpass Filter: Impulse Response

» [Impulse response
- y(0)=x(0)=1
-y =x()+a-y(0)=a
- y@2)=x(2)+a-y1) =a’

— ;.(n) =x(n)+a-y(n—1) =a"

« Stability!
— If a < 1, the filter output converges (stable)
— If a = 1, the filter output oscillates (critical)
— If a > 1, the filter output diverges (unstable)
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A Simple Feedback Lowpass Filter: Frequency Response

= More dramatic change than the simplest lowpass filter (FIR)

— Phase response is not linear
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Reson Filter

= Difference equation

y(n) =x(n) +2r-cos-y(n—1) —r?-y(n —2)

= Signal flow graph

x(n) + > y(n)

27 - cosf




Reson Filter: Frequency Response

= Generate resonance at a particular frequency

— Control the peak height by r and the peak frequency by 6
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Comb Filter

= Difference equation

= Signal flow graph

x(n)

y(n) =x(n) +x(n - M)
y(n) =x(m)+a-y(m—N) (Feedback)

>

Z

-M

(Feedforward)

@—» y(n) x(n) ——{%

Feedforward

Q

Z

—-N

Feedback
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Comb Filter: Frequency Response

= "Combs” become shaper in the feedback type

Amplitude Response (Feedfonuard)

1\/\/ \/ . y(n) =x(n) + x(n — 8)
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Perception of Time Delay

= The 30 Hz transition
— Given a repeated click sound (e.g. impulse train):
« |f the rate is less than 30Hz, they are perceived as discrete events.
 As the rate is above 30 Hz, they are perceive as a tone
— Demo: http://auditoryneuroscience.com/?g=pitch/click train

= Feedback comb filter: y(n) = x(n) + a-y(n — N)

— IfN< % (F;: sampling rate): models sound propagation and reflection with energy
loss on a string (Karplus-strong model)

— IfN< % (F;: sampling rate): generate a looped delay
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General Filter Form

= The general form of digital Filters

—yn) =by-x(n)+b;,-x(n—1)+b, - x(n—2)+ ..+ by-x(n— M)
+a, - y\n—1)+a, - y(n—2)+--+ay-y(n—N)

> y(n)

x(n)

x(n-M)
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Frequency Response

= Sine-wave Analysis

— x(n) = /9" D x(n —m) = /P~ = g=J¥My(n) for any m

— Let's assume that y(n) = G(w)e/@n*0@) 3 y(n —m) = e /™y (n) for any m

= Putting this into the different equation

_')7(7’1) — bo . X(Tl) + b1 . e_jw . x(n) + bz . e—ij . X(Tl) + ...+ bM . e—jwM . x(n)
ta, - e 1. y(n) +a, - e 2w cy(n) + -+ ay - g~ JwN - y(n)

b0+b1 °€_jw +b2 ’e_jzw + ...+ bM'e_jwM
1+ a;-e /¥ +a,-e 29+ . +ay-eJoN

y(n) =

x(n)

bO +b1 . e_jw +b2 °e_j2“) + ...+ bM. e_jwM

H(w) = . : .
(@) 1+ a-e /@ +ay-e 29+ . +ay-eJON

H(w) : frequency response
G(w) = |H(w)| : amplitude response
0(w) = £H(w) : phase response
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Z-Transform

s Z-transform

Define z to be a variable in complex plane: we call it z-plane

When z = ¢ (on unit circle), the frequency response is a particular case of the
following form

B(z) bo+by-z7'+by-z7%+ .4 by-z7M

H(z) = —
(2) A(z) 1+ay-zv'+a,-z72+ .. +ay-z7VN

We call this z-transform or the transfer function of the filter
z! corresponds to one sample delay: delay operator or delay element
Filters are often expressed as z-transform: polynomial of z~1
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Z-Transform

= Poles and Zeros
— H(z) can be factorized and we can find roots for each of polynomials
— Zeros: the numerator roots
— Poles: the denominator roots

B(z) _ (1-qz)(1-¢,z)1-¢z")..1-¢,2 )
Az) (I-pzH(1-pz)1-pz)..(I-pyz )

H(z)=

= We can analyze frequency response of filters more easily with poles and
zeros than numerator or denominator coefficient
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Practical Filters

= One-pole one-zero filters
— Leaky integrator

1
— Moving average H(z)= by +bz
— DC-removal filters a, + alz_l

— Bass / treble shelving filter

= Biquad filters
— Reson filter H () = by+bz "' +b,7"
— Band-pass / notch filters (z) =
— Equalizer: a set of biquad filters

-1 -2
a,+a,z +a,z

= Any high-order filter can be factored into a combination of one-pole one-
zero filters or bi-quad filters!
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